Author |
Message |
|
residues are 0, not correct, Gerbicz=1 must be -Gerbicz=1
How are the CPU temps? Without Gerbiczcheck running you cant find hardware errors.
with -Gerbics=1 I get
./llr2 -d -t4 -Gerbicz=1 -q "13288*96^204730-1"
Invalid switch
Usage: llr [-aN] [-bdhmoqv] [-wDIR] [input file name]
-aN Use an alternate set of INI and output files.
-bN Run in the background.
-d Print detailed information to stdout.
-h Print this.
-m Menu to configure llr.
-okeyword=value Set an option in .ini file.
-q"expression" Test a single k*b^n+c or b^n-b^m+c number.
-v Print the version number.
-wDIR Run from a different working directory.
also without space between q and expression
./llr2 -d -t4 -Gerbicz=1 -q"13288*96^204730-1"
Invalid switch
Usage: llr [-aN] [-bdhmoqv] [-wDIR] [input file name]
-aN Use an alternate set of INI and output files.
-bN Run in the background.
-d Print detailed information to stdout.
-h Print this.
-m Menu to configure llr.
-okeyword=value Set an option in .ini file.
-q"expression" Test a single k*b^n+c or b^n-b^m+c number.
-v Print the version number.
-wDIR Run from a different working directory.
re-testing ./llr2 -d -t4 Gerbicz=1 -q "13288*96^204730-1" saw a rise in CPU temps from 36 degrees Celsius to 59 in thermal zones 0, 6 and 7 (or all cpu cores). |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
residues are 0, not correct, Gerbicz=1 must be -Gerbicz=1
How are the CPU temps? Without Gerbiczcheck running you cant find hardware errors.
with -Gerbics=1 I get
./llr2 -d -t4 -Gerbicz=1 -q "13288*96^204730-1"
Invalid switch
Usage: llr [-aN] [-bdhmoqv] [-wDIR] [input file name]
-aN Use an alternate set of INI and output files.
-bN Run in the background.
-d Print detailed information to stdout.
-h Print this.
-m Menu to configure llr.
-okeyword=value Set an option in .ini file.
-q"expression" Test a single k*b^n+c or b^n-b^m+c number.
-v Print the version number.
-wDIR Run from a different working directory.
ah yes,try -oGerbicz=1 |
|
|
|
./llr2 -d -t4 -oGerbicz=1 -q"13288*96^204730-1"
Gerbicz check is requested, switching to PRP.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 160K, Pass1=640, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 160K, Pass1=640, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too much errors ; Restarting with next larger FFT length...
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too many errors, aborting. |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
./llr2 -d -t4 -oGerbicz=1 -q"13288*96^204730-1"
Gerbicz check is requested, switching to PRP.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 160K, Pass1=640, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 160K, Pass1=640, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too much errors ; Restarting with next larger FFT length...
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too many errors, aborting.
Thx! I guess its a heating issue, never seen failed +1 bases, so its not the current problem. If you can run without Gerbiczcheck then we know if latest gwnum is running. |
|
|
|
If you can run without Gerbiczcheck then we know if latest gwnum is running.
Didn't I already do that? If not: what should be the exact command/arguments? |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
If you can run without Gerbiczcheck then we know if latest gwnum is running.
Didn't I already do that? If not: what should be the exact command/arguments?
remove -oGerbicz=1 from commandline |
|
|
|
If you can run without Gerbiczcheck then we know if latest gwnum is running.
Didn't I already do that? If not: what should be the exact command/arguments?
remove -oGerbicz=1 from commandline
I already thought of that, but it just starts again -WITH Gerbicz test...
./llr2 -d -t4 -q"13288*96^204730-1"
Gerbicz check is requested, switching to PRP.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too much errors ; Restarting with next larger FFT length...
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using zero-padded Pentium4 FFT length 240K, Pass1=320, Pass2=768, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using zero-padded Pentium4 FFT length 240K, Pass1=320, Pass2=768, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using zero-padded Pentium4 FFT length 240K, Pass1=320, Pass2=768, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Continuing from last save file.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using zero-padded Pentium4 FFT length 240K, Pass1=320, Pass2=768, clm=4, 4 threads, a = 3, L2 = 123*104
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1600 / 204730 [0.78%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 3199 / 204730 [1.56%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 4798 / 204730 [2.34%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 6397 / 204730 [3.12%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 7996 / 204730 [3.90%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 9595 / 204730 [4.68%], 0 ch13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 11194 / 204730 [5.46%], 0 c Gerbicz check failed at 12792.
Too many errors, aborting. |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
If you can run without Gerbiczcheck then we know if latest gwnum is running.
Didn't I already do that? If not: what should be the exact command/arguments?
remove -oGerbicz=1 from commandline
I already thought of that, but it just starts again -WITH Gerbicz test...
./llr2 -d -t4 -q"13288*96^204730-1"
Gerbicz check is requested, switching to PRP.
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using FFT length 192K, Pass1=768, Pass2=256, clm=4, 4 threads, a = 3, L2 = 123*104
never seen it, should not running with, then try -oGerbicz=0
https://www.mersenneforum.org/showthread.php?t=28276&page=3 |
|
|
|
The Pentium J5005 and J5040 have no FMA3 instruction capability (just as the Celerons J4005, J4025, J4105 and J4125):
Pentium/Celeron Gemini Lake Instruction set extensions
AES / Advanced Encryption Standard +
AMD64 / EM64T 64-bit technology +
MMX +
SSE +
SSE2 +
SSE3 +
SSE4.1 +
SSE4.2 +
SSSE3 / Supplemental SSE3 + |
|
|
|
We've seen this before, with the missing -o before Gerbicz:
./llr2 -d -t4 -oGerbicz=0 -q"13288*96^204730-1"
Starting probable prime test of 13288*96^204730-1 = 13288*3^204730*2^1023650-1
Using zero-padded Pentium4 FFT length 240K, Pass1=320, Pass2=768, clm=4, 4 threads, a = 3
13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 10000 / 1348154 [0.74%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 20000 / 1348154 [1.48%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 30000 / 1348154 [2.22%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 40000 / 1348154 [2.96%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 50000 / 1348154 [3.70%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 60000 / 1348154 [4.45%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 70000 / 1348154 [5.19%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 80000 / 1348154 [5.93%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 90000 / 1348154 [6.67%]. T13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 100000 / 1348154 [7.41%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 110000 / 1348154 [8.15%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 120000 / 1348154 [8.90%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 130000 / 1348154 [9.64%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 140000 / 1348154 [10.38%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 150000 / 1348154 [11.12%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 160000 / 1348154 [11.86%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 170000 / 1348154 [12.60%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 180000 / 1348154 [13.35%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 190000 / 1348154 [14.09%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 200000 / 1348154 [14.83%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 210000 / 1348154 [15.57%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 220000 / 1348154 [16.31%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 230000 / 1348154 [17.06%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 240000 / 1348154 [17.80%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 250000 / 1348154 [18.54%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 260000 / 1348154 [19.28%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 270000 / 1348154 [20.02%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 280000 / 1348154 [20.76%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 290000 / 1348154 [21.51%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 300000 / 1348154 [22.25%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 310000 / 1348154 [22.99%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 320000 / 1348154 [23.73%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 330000 / 1348154 [24.47%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 340000 / 1348154 [25.21%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 350000 / 1348154 [25.96%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 360000 / 1348154 [26.70%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 370000 / 1348154 [27.44%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 380000 / 1348154 [28.18%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 390000 / 1348154 [28.92%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 400000 / 1348154 [29.67%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 410000 / 1348154 [30.41%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 420000 / 1348154 [31.15%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 430000 / 1348154 [31.89%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 440000 / 1348154 [32.63%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 450000 / 1348154 [33.37%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 460000 / 1348154 [34.12%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 470000 / 1348154 [34.86%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 480000 / 1348154 [35.60%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 490000 / 1348154 [36.34%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 500000 / 1348154 [37.08%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 510000 / 1348154 [37.82%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 520000 / 1348154 [38.57%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 530000 / 1348154 [39.31%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 540000 / 1348154 [40.05%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 550000 / 1348154 [40.79%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 560000 / 1348154 [41.53%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 570000 / 1348154 [42.28%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 580000 / 1348154 [43.02%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 590000 / 1348154 [43.76%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 600000 / 1348154 [44.50%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 610000 / 1348154 [45.24%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 620000 / 1348154 [45.98%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 630000 / 1348154 [46.73%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 640000 / 1348154 [47.47%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 650000 / 1348154 [48.21%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 660000 / 1348154 [48.95%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 670000 / 1348154 [49.69%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 680000 / 1348154 [50.43%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 690000 / 1348154 [51.18%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 700000 / 1348154 [51.92%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 710000 / 1348154 [52.66%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 720000 / 1348154 [53.40%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 730000 / 1348154 [54.14%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 740000 / 1348154 [54.88%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 750000 / 1348154 [55.63%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 760000 / 1348154 [56.37%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 770000 / 1348154 [57.11%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 780000 / 1348154 [57.85%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 790000 / 1348154 [58.59%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 800000 / 1348154 [59.34%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 810000 / 1348154 [60.08%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 820000 / 1348154 [60.82%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 830000 / 1348154 [61.56%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 840000 / 1348154 [62.30%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 850000 / 1348154 [63.04%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 860000 / 1348154 [63.79%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 870000 / 1348154 [64.53%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 880000 / 1348154 [65.27%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 890000 / 1348154 [66.01%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 900000 / 1348154 [66.75%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 910000 / 1348154 [67.49%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 920000 / 1348154 [68.24%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 930000 / 1348154 [68.98%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 940000 / 1348154 [69.72%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 950000 / 1348154 [70.46%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 960000 / 1348154 [71.20%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 970000 / 1348154 [71.95%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 980000 / 1348154 [72.69%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 990000 / 1348154 [73.43%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1000000 / 1348154 [74.17%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1010000 / 1348154 [74.91%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1020000 / 1348154 [75.65%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1030000 / 1348154 [76.40%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1040000 / 1348154 [77.14%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1050000 / 1348154 [77.88%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1060000 / 1348154 [78.62%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1070000 / 1348154 [79.36%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1080000 / 1348154 [80.10%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1090000 / 1348154 [80.85%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1100000 / 1348154 [81.59%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1110000 / 1348154 [82.33%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1120000 / 1348154 [83.07%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1130000 / 1348154 [83.81%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1140000 / 1348154 [84.56%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1150000 / 1348154 [85.30%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1160000 / 1348154 [86.04%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1170000 / 1348154 [86.78%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1180000 / 1348154 [87.52%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1190000 / 1348154 [88.26%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1200000 / 1348154 [89.01%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1210000 / 1348154 [89.75%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1220000 / 1348154 [90.49%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1230000 / 1348154 [91.23%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1240000 / 1348154 [91.97%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1250000 / 1348154 [92.71%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1260000 / 1348154 [93.46%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1270000 / 1348154 [94.20%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1280000 / 1348154 [94.94%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1290000 / 1348154 [95.68%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1300000 / 1348154 [96.42%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1310000 / 1348154 [97.16%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1320000 / 1348154 [97.91%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1330000 / 1348154 [98.65%].13288*96^204730-1 = 13288*3^204730*2^1023650-1, bit: 1340000 / 1348154 [99.39%]. 13288*96^204730-1 = 13288*3^204730*2^1023650-1 is not prime. RES64: 0000000000000000. OLD64: 0000000000000003 Time : 1754.982 sec. |
|
|
|
The Pentium J5005 and J5040 have no FMA3 instruction capability (just as the Celerons J4005, J4025, J4105 and J4125):
Pentium/Celeron Gemini Lake Instruction set extensions
AES / Advanced Encryption Standard +
AMD64 / EM64T 64-bit technology +
MMX +
SSE +
SSE2 +
SSE3 +
SSE4.1 +
SSE4.2 +
SSSE3 / Supplemental SSE3 +
People that use boards with these processors are advised to replace them with boards featuring the Intel N100 processor
Supported Extensions & Technologies:
AES / Advanced Encryption Standard
AMD64 / EM64T 64-bit technology
MMX
SSE
SSE2
SSE3
SSSE3
SSE4
SSE4.1
SSE4.2
AVX
AVX2
FMA3
SHA
VT-x
VT-d |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
ok, thx!
for summary:
llr3.8.2x - is running, valid residues
llr2 with Gerbiczcheck - failed due hardware issues (heating issues)
llr2 without Gerbiczcheck - failed, invalid residues (heating issues)
prstv10 - failed
prstv11 - failed |
|
|
|
The Pentium J5005 and J5040 have no FMA3 instruction capability (just as the Celerons J4005, J4025, J4105 and J4125):
Pentium/Celeron Gemini Lake Instruction set extensions
AES / Advanced Encryption Standard +
AMD64 / EM64T 64-bit technology +
MMX +
SSE +
SSE2 +
SSE3 +
SSE4.1 +
SSE4.2 +
SSSE3 / Supplemental SSE3 +
To follow up on this, none of the three listed affected processors have FMA3 or any form of AVX. This leads me to believe the gwnum bug may be related to its pre-AVX FFT implementations (which I believe are based on SSE2). Therefore, this should be testable on any pre-Sandy Bridge CPU (ca. 2011). |
|
|
rebirtherVolunteer moderator Project administrator Project developer Project tester Project scientist
 Send message
Joined: 2 Jan 13 Posts: 7709 Credit: 44,264,218 RAC: 0
|
The Pentium J5005 and J5040 have no FMA3 instruction capability (just as the Celerons J4005, J4025, J4105 and J4125):
Pentium/Celeron Gemini Lake Instruction set extensions
AES / Advanced Encryption Standard +
AMD64 / EM64T 64-bit technology +
MMX +
SSE +
SSE2 +
SSE3 +
SSE4.1 +
SSE4.2 +
SSSE3 / Supplemental SSE3 +
To follow up on this, none of the three listed affected processors have FMA3 or any form of AVX. This leads me to believe the gwnum bug may be related to its pre-AVX FFT implementations (which I believe are based on SSE2). Therefore, this should be testable on any pre-Sandy Bridge CPU (ca. 2011).
What we need to find out is that +1 bases have no issues but -1 are failing. |
|
|